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Муниципальный этап, 7-8 классы. Казань, 4 декабря 2025 г.

Задача A. Хомячья раскраска
Пусть дана доска размера n ×m, которую требуется раскрасить диагонально в k цветов. Цвет

клетки (i, j) определяется формулой

color(i, j) = ((i+ j − 2) mod k) + 1,

то есть каждая диагональ с одинаковой суммой i + j получает один цвет, а цвета циклически по-
вторяются.

1. Остатки по модулю k

Рассмотрим остатки
r = (i− 1) mod k, s = (j − 1) mod k.

Тогда
(i+ j − 2) mod k = (r + s) mod k.

Следовательно, цвет клетки зависит только от пары остатков (r, s).

2. Сколько строк и столбцов имеют каждый остаток

Для чисел 1, . . . , n остатки (i− 1) mod k распределяются равномерно.
Пусть

n = qn · k + remn, 0 ⩽ remn < k.

Тогда количество строк, чьи индексы имеют остаток r, равно

rows[r] =

{
qn + 1, r < remn,

qn, r ⩾ remn.

Аналогично для столбцов:
m = qm · k + remm,

cols[s] =

{
qm + 1, s < remm,

qm, s ⩾ remm.

3. Подсчёт количества клеток каждого цвета

Все клетки с остатками (r, s) дают вклад

rows[r] · cols[s]

в цвет номер
t = (r + s) mod k.

Таким образом:
ans[t] += rows[r] · cols[s].

После этого массив ans содержит:

ans[0] = клеток цвета 1, ans[1] = клеток цвета 2, . . .

4. Временная сложность

Так как k ⩽ 5, перебор всех пар остатков (r, s) занимает не более 25 итераций — решение работает
за O(k2).

Типы данных должны быть 64-битными, поскольку результат может достигать 4 · 1018.
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5. Полный код решения на Python

1 import sys
2
3 data = sys.stdin.read().strip().split()
4 n = int(data[0])
5 m = int(data[1])
6 k = int(data[2])
7
8 rows = [0] * k
9 qn, remn = divmod(n, k)

10 for r in range(k):
11 rows[r] = qn + (1 if r < remn else 0)
12
13 cols = [0] * k
14 qm, remm = divmod(m, k)
15 for s in range(k):
16 cols[s] = qm + (1 if s < remm else 0)
17
18 ans = [0] * k
19 for r in range(k):
20 for s in range(k):
21 t = (r + s) % k
22 ans[t] += rows[r] * cols[s]
23
24 for x in ans:
25 print(x)

Задача B. Магическая семёрка
Подзадача 1. [Переборное решение.]
Будем последовательно проверять числа начиная с 1, пока не будет найдено k-е подходящее

число. Счётчик count отслеживает количество найденных магических чисел. Переменная n соот-
ветствует текущему натуральному числу. Условие n % 7 == 0 or n % 10 == 7 проверяет, является
ли число n магическим. Цикл продолжается до тех пор, пока не будет найдено k-е магическое число.

Это решение работает для n ⩽ 106 и имеет сложность O(n).

1 k = int(input())
2 count = 0
3 n = 0
4 while count < k:
5 n += 1
6 if n % 7 == 0 or n % 10 == 7:
7 count += 1
8 print(n)

Подзадача 2. [Формула включений-исключений.]
В этом решении применяются комбинаторные рассуждения и не используется перебор.

1 def count_magic_numbers(n):
2 return n // 7 + (n + 3) // 10 -(n + 63) // 70
3
4 def find_kth_magic_number(k):
5 left, right = 1, 10**18
6
7 while left < right:
8 mid = (left + right) // 2
9 if count_magic_numbers(mid) < k:

10 left = mid + 1
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11 else:
12 right = mid
13 return left
14
15 k = int(input())
16
17 result = find_kth_magic_number(k)
18 print(result)

Функция count_magic_numbers(n) вычисляет количество магических чисел от 1 до n по формуле
включений-исключения. Сначала подсчитываем количество чисел, кратных 7. Они образуют ариф-
метическую прогрессию, их количество равно n // 7. Затем учитываем числа, оканчивающиеся на
7; они имеют вид 10k+7, их количество равно (n + 3) // 10. Наконец, подсчитаем количество чи-
сел с обоими свойствами; эти числа имеют вид 70m+ 7, их количество равно (n + 63) // 70. Для
того, чтобы избежать двойного учёта, вычисляем сумму первых двух величин за вычетом третьей.

Функция find_kth_magic_number(k) использует бинарный поиск для нахождения k-го магиче-
ского числа. На каждой итерации эта функция проверяет, сколько магических чисел содержится
в диапазоне [1, mid]. Если количество меньше k, сдвигает левую границу, иначе — правую. По
завершении цикла left указывает на k-е магическое число.

Сложность этого решения O(log(max_answer)) — бинарный поиск по числам до 1017, память
O(1) — используется константное количество памяти.

Это решение эффективно работает для больших значений k (до 1017), так как использует только
целочисленную арифметику и бинарный поиск.

Задача C. Нечётно-степенные числа
Первая подзадача. Для небольших значений m и r задачу можно решить перебором. Будем

проверять делимость конкретного числа n из промежутка [l; r] на все числа i, начиная с i = 2 и до
i = n−1. Если при очередной проверке n не делится на i, пропускаем это значение i, а если делится,
проверяем делимость на i ещё раз и так далее. Если n делится на i нечётное число раз, значит,
этот множитель i входит в разложение n в нечётной степени. (Это число i будет также простым
числом!) Затем переходим к следующему значению i. Таким образом, мы сможем установить, будет
ли число n нечётно-степенным. Если количество нечётно-степенных чисел n в промежутке [l; r]
равно заданному m, получаем требуемый ответ.

Вторая подзадача: Для значений m ⩽ 10 предыдущее решение можно улучшить. Дело в том,
что если число n – составное, его наименьший простой делитель не превосходит

√
n, поэтому его

простые делители можно найти за O(
√
n) операций. Для этого проверяем делимость конкретного

числа n из промежутка [l; r] на все числа i, не превосходящие
√
n. Такое решение проходит все тесты

второй группы.
Третья подзадача. Улучшим решение для значений m > 10. Для этого нужно заметить,

что если требуется найти последовательность из m ⩾ 8 подряд идущих нечётно-степенных чисел,
ответ в задаче отрицательный, так как таких наборов нет. Действительно, восемь последовательных
натуральных чисел дают различные остатки при делении на 8. Поэтому среди них найдётся число,
которое при делении на 8 дает остаток 4. Это число делится на 4, но не делится на 8, поэтому в
разложении его на простые множители двойка входит во второй степени. Другими словами, при
m > 7 ответ в задаче -1, то есть не существует 8 последовательных нечётно-степенных чисел.

Задача D. Хомяк и двоичные тайны
Первая подзадача. При R ⩽ 217 достаточно просто перебрать все числа x от 0 до R. Для

каждого числа можно вручную получить двоичную запись делением на два: на каждом шаге вы-
числяем остаток x mod 2 и делим x на 2. Такое разложение занимает O(log x) времени. Подсчитав
количество единиц в двоичном представлении числа x, проверяем условие popcount(x) ≡ 0 (mod K).
Общее время работы — O(R logR), что полностью укладывается в ограничения первой подзадачи.
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Вторая подзадача. При R ⩽ 225 количество чисел уже достигает 3 ·107, и ручное деление на 2
для каждого числа становится заметно медленнее. Однако современные языки программирования
предоставляют готовые функции подсчёта количества установленных битов — popcount. Например:

• C++: __builtin_popcount, __builtin_popcountll;

• Java: Integer.bitCount(), Long.bitCount();

• Python: метод x.bit_count();

• C#: System.Numerics.BitOperations.PopCount().

Эти функции реализованы на уровне процессора и работают за O(1) на большинстве платформ.
Поэтому решение сводится к простому перебору x от 0 до R, вызову popcount и проверке делимости.
Такое решение работает за O(R) и проходит вторую подзадачу.

Третья подзадача. В этой группе R ⩽ 244, и полный перебор x невозможен. Однако двоичная
длина числа R не превосходит 44, и можно применить идею meet in the middle.

Пусть длина двоичной записи R равна L ⩽ 44. Разобьём её на две половины: младшие m бит и
старшие L−m бит. Запишем число x как

x = hi · 2m + lo.

Тогда
popcount(x) = popcount(hi) + popcount(lo).

Далее:

• переберём все значения lo (их 2m), сгруппируем по количеству единиц;

• переберём все значения hi, для каждого найдём максимально возможное lomax, такое что x ⩽ R;

• по количеству единиц в hi определим требуемое количество единиц в lo, и найдём количество
подходящих lo бинарным поиском.

Такое решение имеет асимптотику около O(2L/2 · L), что хорошо работает при L ⩽ 44.

Четвёртая подзадача. При R ⩽ 263 двоичная длина не превосходит 63. Здесь оптимально
использовать стандартное битовое ДП по двоичной записи R.

Пусть b0b1 . . . bn−1 — двоичная запись R (старший бит слева). Рассмотрим ДП

dp[i][r][t],

где:

• i — обработано первых i битов;

• r — остаток по модулю K от числа единиц;

• t ∈ {0, 1} — флаг tight, равный 1, если префикс числа совпадает с префиксом R.

Переходы стандартны для digit-DP: если t = 1, то на текущем бите можно выбрать только
биты ⩽ bi, если t = 0, то можно выбирать 0 и 1 свободно. Количество единиц обновляется как
(r + bit) mod K.

После обработки всех n битов искомый ответ равен

dp[n][0][0] + dp[n][0][1].

Сложность такого решения — O(nK), что проходит четвертую группу.

Пятая подзадача. В этой группе R ⩽ 2127, и обычных 64 бит уже недостаточно. В C++
существует тип __int128, который позволяет хранить такие числа. Тогда можно:
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1. прочитать R как десятичную строку;

2. перевести её в тип __int128;

3. извлечь двоичную запись с помощью сдвигов и &1;

4. выполнить битовое ДП, как в четвёртой подзадаче.

В других языках прямого аналога __int128 нет:

• в Java есть класс BigInteger с методами shiftRight, testBit;

• в Python тип int поддерживает произвольно длинные числа, и можно использовать опера-
ции » и & 1. Однако у современных версий Python есть ограничение на максимальное число
цифр строки, которое можно преобразовать в int. По умолчанию разрешено не более 4300
цифр; это параметр sys.int_info.default_max_str_digits (его можно увеличивать вызовом
sys.set_int_max_str_digits()).

• в C# доступен класс System.Numerics.BigInteger.

Но в любом случае двоичная длина здесь не превышает 127 бит, поэтому битовое ДП работает
очень быстро.

Шестая подзадача. Теперь n ⩽ 200 десятичных цифр, то есть двоичная длина числа R поряд-
ка 664 бит. K ⩽ 200, поэтому можно использовать битовое ДП, но требуется эффективно перевести
R в двоичную систему.

Проще всего выполнить деление большой десятичной строки на 2: проходим по всем её символам
слева направо, получаем частное и остаток. Остаток образует очередной бит результата. Повторяем
до тех пор, пока строка не станет «0».

Время работы такой конвертации: O(n logR), что достаточно быстро при n ⩽ 200. Затем выпол-
няется стандартное ДП по битам.

Седьмая подзадача. При n ⩽ 2000 двоичная длина достигает ∼ 6644 бит, и хранить трёхмер-
ное ДП dp[i][r][t] уже слишком тяжело: память Θ(nK) может не поместиться.

Но для digit-DP по битам достаточно хранить только два слоя: текущий и следующий:

dp[r][t], ndp[r][t].

После обработки каждого бита слои меняются местами, и ndp обнуляется. Это стандартная опти-
мизация «rolling array», и она позволяет уложиться как по времени, так и по памяти.

Восьмая подзадача. При n ⩽ 5000 конвертация десятичной строки в двоичное число с де-
лением по одной цифре становится слишком медленной. Нужно ускорять операции над большими
числами.

Строка R разбивается на блоки по 18 цифр (основание 1018). Так получается массив целых
64-битных чисел:

R = a0 · 1018k + a1 · 1018(k−1) + · · ·+ ak.

Деление большого числа на 2 выполняется уже по блокам: каждый блок делится как обычное 64-
битное число, а остаток переносится в следующий блок. Количество блоков уменьшается примерно
в 18 раз, и перевод становится существенно быстрее.

После получения двоичной записи выполняется ДП или комбинаторика (см. следующую подза-
дачу).

Девятая подзадача. При n ⩽ 30000 и K ⩽ 100000 переходы O(nK) становятся слишком
медленными. Здесь используется комбинаторный подход и корневая декомпозиция относительно
параметра K.
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Заметим, что существует естественный порог когда K большое, проще считать числа с точным
количеством единиц.

Пусть длина двоичной записи R равна n, и рассмотрим значения s, кратные K:

s = 0,K, 2K, . . . , s ⩽ n.

Для каждого такого s можно подсчитать количество чисел x ⩽ R с popcount(x) = s комбинаторно.
Рассмотрим двоичную запись R = b0b1 . . . bn−1. Будем проходить её слева направо и следить,

сколько единиц содержится в префиксе R[0..i− 1]. Когда на позиции i стоит единица, у нас появля-
ется вариант поставить в числа x на этой позиции ноль («уйти вниз» относительно R). После этого
хвост из (n− i− 1) бит можно выбирать произвольно, но нужно поставить ровно

need = s− cnt_ones

единиц. Количество способов равно биномиальному коэффициенту(
n− i− 1

need

)
.

Суммируя такие варианты для всех позиций, где R содержит единицу, а также учитывая само число
R (если popcount(R) = s), получаем число всех x ⩽ R с ровно s единицами.

Так как K большое, количество значений s имеет порядок n
K . Каждое вычисление занимает

O(n), всего сложность порядка

O

(
n2

K

)
,

что эффективно при большом K.
Именно поэтому в финальном решении применяется корневая декомпозиция:

если K2 ⩽ n : выгодно ДП; если K2 > n : выгодна комбинаторика.

Такой гибрид полностью покрывает самую жёсткую девятую подзадачу.
Почему вообще гибрид «DP + комбинаторика» является оптимальным алгоритмом?

• При маленьком K выгодно использовать битовое ДП. Его сложность: O(nK).

• При большом K выгодно использовать комбинаторный подход, так как количество подхо-
дящих значений s (таких что s ≡ 0 (mod K) и s ⩽ n) равно n

K , поэтому общая сложность:

O
(
n2

K

)
.

Чтобы понять, какой метод быстрее, рассмотрим границу между ними. Ищем значение K, при
котором оба варианта дают одинаковую сложность:

nK ≈ n2

K
=⇒ K2 ≈ n =⇒ K ≈

√
n.

Тогда:

• Если K2 ⩽ n (то есть K ⩽
√
n), то

nK ⩽ n
√
n,

n2

K
⩾

n2

√
n
= n3/2,

значит DP быстрее комбинаторики.

• Если K2 > n (то есть K >
√
n), то

n2

K
⩽

n2

√
n
= n3/2, nK ⩾ n

√
n,

значит комбинаторика быстрее DP.

Таким образом, порог K ≈
√
n является разделителем между двумя методами. Именно поэтому

итоговое решение использует правило:

если K2 ⩽ n, применяем DP; иначе используем комбинаторику.

Итоговая сложность:O(n ·
√
n)
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